hệ thức lượng trong tam giác

Nhắc lại hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông góc bên trên đỉnh \(A\) (\(\widehat{A} = 90^0\)), tao có:

Bạn đang xem: hệ thức lượng trong tam giác

Quảng cáo

1. \({b^2} = ab';{c^2} = a.c'\)

2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)

3. \(a.h = b.c\)

4. \(h^2= b’.c’\)

5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)

 

1. Định lý cosin

Định lí: Trong một tam giác bất kì, bình phương một cạnh vì thế tổng những bình phương của nhị cạnh còn sót lại trừ lên đường nhị phen tích của nhị cạnh cơ nhân với \(cosin\) của góc xen thân thiết bọn chúng.

Ta với những hệ thức sau:  

$$\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr
& {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr
& {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ trái ngược của quyết định lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính chừng lâu năm đàng trung tuyến của tam giác:

Cho tam giác \(ABC\) với những cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là chừng lâu năm những đàng trung tuyến theo lần lượt vẽ kể từ những đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}^{2}\) =  \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) ngẫu nhiên, tỉ số thân thiết một cạnh và sin của góc đối lập với cạnh cơ vì thế 2 lần bán kính của đàng tròn xoe nước ngoài tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

Xem thêm: hướng về phía chân trời

với \(R\) là nửa đường kính đàng tròn xoe nước ngoài tiếp tam giác 

Công thức tính diện tích S tam giác

Diện tích \(S\) của tam giác \(ABC\) được xem theo đuổi một trong số công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)   

\(S = \dfrac{abc}{4R}\, \,(2)\)           

\(S = pr\, \,(3)\)              

\(S = \sqrt{p(p - a)(p - b)(p - c)}\)  (công thức  Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là nửa đường kính đàng tròn xoe nước ngoài tiếp, bk đàng tròn xoe nội tiếp và \(S\) là diện tích S tam giác cơ.

3. Giải tam giác và phần mềm nhập việc đo đạc

Giải tam giác : Giải tam giác là đi kiếm những nguyên tố (góc, cạnh) chưa chắc chắn của tam giác Lúc vẫn biết một vài nguyên tố của tam giác cơ.

Muốn giải tam giác tao cần thiết thám thính côn trùng tương tác trong những góc, cạnh vẫn cho tới với những góc, những cạnh chưa chắc chắn của tam giác trải qua những hệ thức và được nêu nhập quyết định lí cosin, quyết định lí sin và những công thức tính diện tích S tam giác.

Các Việc về giải tam giác: Có 3 Việc cơ bạn dạng về gỉải tam giác:

a) Giải tam giác lúc biết một cạnh và nhị góc.

=> Dùng quyết định lí sin nhằm tính cạnh còn sót lại.

b) Giải tam giác lúc biết nhị cạnh và góc xen giữa

=> Dùng quyết định lí cosin nhằm tính cạnh loại tía. 

Sau cơ người sử dụng hệ trái ngược của quyết định lí cosin nhằm tính góc.

c) Giải tam giác lúc biết tía cạnh

Đối với Việc này tao dùng hệ trái ngược của quyết định lí cosin nhằm tính góc: 

    \(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)       

    \(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

    \(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý: 

Xem thêm: đạo hàm 1/căn x

1. Cần cảnh báo là 1 trong tam giác giải được Lúc tao biết 3 nguyên tố của chính nó, nhập cơ nên với tối thiểu một nguyên tố chừng lâu năm (tức là nguyên tố góc ko được vượt lên trên 2)

2. Việc giải tam giác được dùng nhập những Việc thực tiễn, nhất là những Việc đo lường.