công thức tính tổng cấp số nhân

Cấp số nhân là phần kỹ năng và kiến thức cần thiết nhập công tác toán trung học phổ thông. Trong số đó, những công thức cung cấp số nhân khá phức tạp. Vì vậy, nhằm thực hiện bài bác tập dượt thì những em cần thiết ghi ghi nhớ và biết phương pháp áp dụng công thức. Cùng VUIHOC điểm lại những công thức và bài bác tập dượt cung cấp số nhân qua quýt nội dung bài viết tại đây.

1. Cấp số nhân là gì?

Cấp số nhân là một trong sản phẩm số (hữu hạn hoặc vô hạn) thoả mãn ĐK Tính từ lúc số hạng loại nhị, từng số hạng đều là tích của số hạng đứng ngay lập tức trước nó với một vài ko thay đổi (hằng số này được gọi là công bội q của cung cấp số nhân). Có nghĩa là:

Bạn đang xem: công thức tính tổng cấp số nhân

u_{n} là cung cấp số nhân với \Leftrightarrow \forall n \geq 2, u_{n-1} với n \in N^{\ast }

Ví dụ: Dãy số (u_{n}), với u_{n}=3^{n} là một trong cung cấp số nhân với số hạng đầu u_{1}=3 và công bội q = 3.

2. Công bội q

q là công bội của cung cấp số nhân un có 

Công bội q=\frac{u_{n+1}}{u_{n}}

Ví dụ 1: Cho cung cấp số nhân u_{1}=3,u_{2}=9. Tính công bội q

Ta có: 

q=\frac{u_{2}}{u_{1}}=\frac{9}{3}=3

Ví dụ 2: Cho cung cấp số nhân u_{3}=8,u_{4}=16 . Tính công bội q

Ta có: 

q=\frac{u_{4}}{u_{3}}=\frac{16}{8}=2

3. Tính hóa học cung cấp số nhân

  • $(u_{n})$ là một trong cung cấp số nhân thì kể từ số hạng loại nhị, bình phương của từng số hạng (trừ số hạng cuối so với cung cấp số nhân hữu hạn) tiếp tục vày tích của số đứng trước và số đứng sau nó.

\Leftrightarrow (u_{k})^{2}=u_{k-1}.u_{k+1}

  • Nếu một cung cấp số nhân un sở hữu số hạng đầu u1 và công bội q thì số hạng tổng quát mắng un sẽ tiến hành tính vày công thức:

u_{n}=u_{1}.q^{n-1}

Ví dụ : Cho cung cấp số nhân $(u_{n})$ với công bội q > 0. 

Biết u1 = 1; u3 =3. Hãy lần u4

Lời giải: 

Ta có: u2= u. u= 3

          u3= u. u4

Từ (1) vì thế u2  > 0 ( vì thế u1=1 > 0 và q > 0)

\Rightarrow u_{4}=\frac{{u_{3}}^{2}}{u_{2}}

  • Khi q = 0 thì sản phẩm sở hữu dạng u1; 0;0…;0;… và Sn=u1 

  • Khi q = 1 thì sản phẩm sở hữu dạng u1;u1;u1;...;u1;... và Sn=nu1.

  • Khi u= 0 thì với từng q, cung cấp số nhân sở hữu dạng 0; 0; 0;…; 0;… và Sn=u1.

Đăng ký ngay lập tức nhằm được trao hoàn hảo cỗ kỹ năng và kiến thức về cung cấp số nhân

4. Tổng hợp ý những công thức tính cung cấp số nhân cơ bản

4.1. Dạng 1: Nhận biết CSN

Phương pháp:

  • Tính q=\frac{u_{n+1}}{u_{n}} \forall n \geq 1

  • Kết luận: 

  • Nếu q là ko thay đổi thì sản phẩm un là cung cấp số nhân

  • Nếu q thay cho thay đổi thì sản phẩm un ko là cung cấp số nhân

Ví dụ minh họa

Ví dụ 1: Một cung cấp số nhân sở hữu số hạng loại nhất là 2 và công bội là 2. Viết 6 số hạng thứ nhất.

Lời giải: 

Ta sở hữu 6 số hạng thứ nhất là: 2, 4, 8, 16, 32, 64

Ví dụ 2 : Cấp số nhân Un sở hữu số hạng loại nhị là 10 và số hạng loại năm là 1250.

  1. Tìm số hạng loại nhất

  2. Viết 5 số hạng đầu tiên

Lời giải:

  1. Đặt r là công bội của cung cấp số nhân.

 Ta có: r(5-2) = r3 hoặc r3 = 1250 : 10 = 125 = 53. Từ cơ r = 5. 

\Rightarrow u1=10=5=2. 

Số hạng loại nhất là 2 

  1. 2, 10, 50, 1250, 6250

Ví dụ 3: Bài cho tới cung cấp số nhân Un thỏa mãn: u_{n}=3^{\frac{n}{2}+1}. Dãy số Un bên trên là cung cấp số nhân trúng hoặc sai? 

Lời giải: 

Ta có: \frac{u_{n}+1}{u_{n}}=\frac{3^{\frac{n+1}{2}+1}}{3^{\frac{n}{2}+1}}=\sqrt3=const không tùy theo n. Vậy sản phẩm số (Un) là một trong cung cấp số nhân với số hạng đầu u_{1}=3\sqrt{3} và công bội là q=\sqrt3

4.2. Dạng 2: Tìm công bội của cung cấp số nhân

Phương pháp: Sử dụng những đặc điểm của CSN, đổi khác nhằm tính công bội của CSN.

Ví dụ 1: Cho cung cấp số nhân Un sở hữu U1 = 2, U2 = 4. Tính công bội q.

Từ công thức tớ có: q=\frac{U_{2}}{U_{1}}=\frac{4}{2}=2

Ví dụ 2: Cho cung cấp số nhân Un sở hữu U1 = 3, U2 = -6. Tính công bội q.

Lời giải: 

Từ công thức tớ có: 

q=\frac{U_{2}}{U_{1}}=\frac{-6}{3}=-2

Ví dụ 3: Đề cho tới tía số x,y,z lập trở thành một cung cấp số nhân và tía số x, 2y, 3z lập trở thành một cung cấp số nằm trong. Tìm công bội q.

Lời giải: 

Đặt q là công bội của cung cấp số nhân trên

Các số x, 2y, 3z lập trở thành một cung cấp số nằm trong \Rightarrow x+3z=4y

Giải vấn đề công thức cung cấp số nhân

4.3. Dạng 3: Tìm số hạng của cung cấp số nhân

Phương pháp:

Để lần số hạng của cung cấp số nhân tớ dùng công thức tính số hạng tổng quát mắng Un = U1.qn-1 , n ≥ 2.

Ví dụ 1: Tìm u1 và q  của cung cấp số nhân biết: 

\left\{\begin{matrix} u_{4} - u_{2} = 72\\ u_{5} - u_{3} = 144 \end{matrix}\right.

Lời giải: 

Ta trở nên đổi: 

\left\{\begin{matrix} u_{1}q^{3} - u_{1}q = 72\\ u_{1}q^{4} - u_{1}q^{2} = 144 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} u_{1}q(q^{2} - 1) = 72\\ u_{1}q^{2}(q^{2} - 1) = 144 \end{matrix}\right.

\Rightarrow q = \frac{144}{72} = 2 \Rightarrow u_{1} = 12

Vậy cung cấp số nhân (un) sở hữu u1 = 12 và q = 2

Ví dụ 2: Bài cho tới cung cấp số nhân (un) với u= 8 , u= 32. Số hạng loại 10 của cung cấp số nhân cơ là? 

Lời giải: 

Gọi q là công bội của cung cấp số nhân (un), tớ sở hữu q^{2}=\frac{u_{5}}{u_{3}}=4 \Rightarrow q = \pm 2

Với q = 2, tớ sở hữu u10 = u. q= 8 . 2= 1024

Với q = -2, tớ sở hữu u10 = u. q7= 8 . (-2)= -1024

Ví dụ 3: Cho cung cấp số nhân (un), hiểu được số hạng thứ nhất u= 3, công bội là 2. Hãy lần số hạng loại 5

Lời giải: 

Áp dụng công thức tớ sở hữu : u= u. qn–1

\Leftrightarrow u= u. q=3 . 2= 48

4.4. Dạng 4: Tính tổng cung cấp số nhân của n số hạng thứ nhất nhập dãy

Ta dùng công thức:

Công thức tính tổng CSN của n số hạng thứ nhất nhập sản phẩm - công thức cung cấp số nhân

Ví dụ 1: Tính tổng cung cấp số nhân:

S = 2 + 6 + 18 + 13122

Lời giải:

(un) sở hữu u1=2 và q = 3. 

13122 = u_{n} = u_{n}q^{n-1} = 2.3^{n-1} \Leftrightarrow n=9 \Rightarrow S=S_{9}=u_{1}\frac{q_{0}-1}{q-1}

Ví dụ 2: Bài cho tới cung cấp số nhân (un) với

(un): \left\{\begin{matrix} u_{3} = 243u_{8}\\ u_{4} = \frac{2}{27} \end{matrix}\right.

  1. 5 số hạng đầu của cung cấp số nhân bên trên là gì? 

  2. 10 số hạng đầu của cung cấp số nhân (un) bên trên sở hữu tổng là bao nhiêu? 

Lời giải: 

Giải bài bác tập dượt vận dụng công thức cung cấp số nhân

Ví dụ 3: Cho cung cấp số nhân Un thỏa mãn: u_{n}=3^{\frac{n}{2}+1}

  1. Dãy số là cung cấp số nhân là trúng hoặc sai?

  2. Tính S = u+ u+ u6... + u20

Lời giải: 

  1. Ta có: \frac{u_{n+1}}{u_{n}}=\frac{3^{\frac{n+1}{2}+1}}{3^{\frac{n}{2}+1}}=\sqrt{3}=const ko tùy theo n. Vậy sản phẩm số (Un) là một trong cung cấp số nhân với số hạng đầu u_{1}=3\sqrt{3} và công bội là q=\sqrt{3}

  2. Dãy số: u2, u4, u6,..., u20 lập trở thành một cung cấp số nhân với số hạng đầu là u= 9, q = 3 

\Rightarrow S=u_{2}+u_{4}+u_{6}...+u_{20}=u_{2}\frac{1-3^{10}}{1-3}=\frac{9}{2}(3^{10}-1)

4.5. Dạng 5: Tìm CSN

Phương pháp:

Xác tấp tểnh những bộ phận kết cấu nên một cung cấp số nhân như: số hạng đầu U1, công bội q tiếp sau đó suy rời khỏi được công thức cho tới số hạng tổng quát mắng .

Ví dụ 1: CSN (un) như sau, lần u1 khi:

u_{n} = \frac{2}{3^{n - 1}}

Mà u_{n} = \frac{2}{6561} \Rightarrow 3^{n - 1} = 6561 \Rightarrow n = 9

Lời giải: 

\left\{\begin{matrix} u_{1}(1 + q^{4}) = \frac{82}{11}\\ u_{1}(1 + q + q^{2} + q^{3} + q^{4}) = 11 \end{matrix}\right.

\Leftrightarrow \left\{\begin{matrix} u_{1}q(1 + q + q^{2}) = \frac{32}{11}\\ u_{1}(1 + q^{4}) = \frac{82}{11} \end{matrix}\right.

\Rightarrow \frac{1 + q^{4}}{q(1 + q + q^{2})} = \frac{82}{39}

\Leftrightarrow Ta sở hữu q = 3 hoặc q = \frac{1}{3}

Khi cơ chuyến lượt u_{1} = \frac{81}{11} hoặc u_{1} = \frac{1}{11}

Xem thêm: văn tả dòng sông quê em lớp 5 ngắn gọn

Ví dụ 2: Dãy số này là cung cấp số nhân: 

  1. 1;0,2;0,04;0,008;...

  2. 1,22,222,2222,...

  3. X,2x,3x,4x,...

  4. 2,3,5,7,...

Lời giải: 

Xét đáp án A tớ có: 

u= 1, u= u. 0,2, u= u. (0,2)2, u= u. (0,2)3

Sử dụng cách thức quy hấp thụ toán học tập tớ minh chứng được u= (0,2)n

Khi cơ \frac{u_{n+1}}{u{n}}=\frac{(0,2)^{n+1}}{0,2}=0,2 ko đổi

Vậy sản phẩm số là cung cấp số nhân sở hữu công bội q = 0,2

Ví dụ 3: Tìm cung cấp số nhân sở hữu sáu số hạng, hiểu được tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.

Lời giải: 

Gọi cung cấp số nhân (un) cần thiết lần sở hữu công bội q, số hạng thứ nhất un.

Ta có: s_{5} = \frac{u_{1} . (1-q)}{1-q}

s5' = u2 + u3 + u4 + u5 + u6

= u1q + u2q + u3q + u4q + u5q

= q . (u+ u+ u+ u+ u5)

= q . S5

Mà S= 31; S5' = 62

\Rightarrow q=2

u_{1}=\frac{s_{5}.(1-q)}{1-q^{5}}=1

Vậy cung cấp số nhân (un) là 1;2;4;8;16;32

Nắm hoàn hảo kỹ năng và kiến thức và cách thức giải từng dạng bài bác tập dượt Toán trung học phổ thông với cỗ bí quyết độc quyền của VUIHOC ngay!!!

5. Cấp số nhân lùi vô hạn

5.1. Định nghĩa

Nếu cung cấp số nhân (un) sở hữu công bội q thỏa mãn nhu cầu -1 < q <1 thì cung cấp số nhân được gọi là lùi vô hạn.

S= u1(1 - qn)(1 - q) = u1(q- 1)(q - 1)

 Trong cơ sn là tổng n số hạng thứ nhất của cung cấp số nhân (un)

Ví dụ: \frac{1}{3},\frac{1}{9},\frac{1}{27},\frac{1}{81},\frac{1}{243} là một cung cấp số nhân lùi vô hạn q=\frac{1}{3}

5.2. Bài toán tổng của cung cấp số nhân lùi hạn

Đề bài bác cho tới cung cấp số nhân lùi vô hạn (công bội q), vậy tớ sở hữu tổng của cung cấp số nhân lùi vô hạn S bằng: $S=\frac{u_{1}}{1-q}$

Ví dụ minh họa 

Ví dụ 1: Tính tổng 

S=1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+...

Lời giải:

Đây là tổng của cung cấp số nhân lùi vô hạn với u_{1}=1, q=\frac{-1}{3} nên 

S=\frac{1}{1+\frac{1}{3}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}

Ví dụ 2: Biểu trình diễn số thập phân vô hạn tuần trả 0,777… bên dưới dạng số

Lời giải: 

Ta có: 

0,777...= 0,7+0,07+0,007+...=\frac{7}{10}+\frac{7}{10^{2}}+\frac{7}{10^{3}}+...=\frac{\frac{7}{10}}{1-\frac{7}{10}}=\frac{7}{9}

Vậy 0,777...=\frac{7}{9}

Ví dụ 3: Tổng của một cung cấp số nhân lùi vô hạn là \frac{5}{3} tổng tía số hạng thứ nhất của sản phẩm số là \frac{39}{25}. Xác tấp tểnh (u1), q của cung cấp số đó?

Lời giải: 

Giải vấn đề vận dụng công thức cung cấp số nhân

6. Một số bài bác tập dượt cung cấp số nhân và cách thức giải chi tiết

Câu 1: Cho cung cấp số nhân un sở hữu công bội q

a) hiểu u= 2, u6 = 486. Tìm q

b) hiểu q= \frac{2}{3}, u_{4} = \frac{8}{21}. Tính u1

c) hiểu u1 = 3, q = -2. Xác tấp tểnh số 192 là số hạng loại bao nhiêu nhập cung cấp số nhân?

Lời giải: 

Áp dụng công thức un = u1.qn-1

a) Theo công thức bên trên tớ có: u6 = u1.q5 \Rightarrow q^{5} = \frac{u_{6}}{u_{1}} = \frac{486}{2} = 243 \Rightarrow q = 3

b) Theo công thức tớ có: u4 = u1.q3 \Rightarrow u_{1} = \frac{u_{4}}{q^{3}} = \frac{8}{21} . (\frac{3}{2})^{2} = \frac{9}{7}

c) Theo công thức tớ có: 12 = 3.(-2)^{n - 1} \Rightarrow (-2)^{n - 1} = 64 \Rightarrow n - 1 = 6 \Rightarrow n = 7

Vậy số 192 là số hạng loại 7

Câu 2: Tìm những số hạng của cung cấp số nhân (un) biết cung cấp số nhân bao gồm sở hữu 5 số hạng và:

a) TH1: u= 3 , u= 27

b) TH2: u– u2 = 25 ,  u3 – u1 = 50

Lời giải: 

a) Theo công thức un = u1.qn - 1 ta sở hữu thứu tự những số hạng u3 và u5 được tính như sau:

u3 = u1.q2 \Rightarrow 3 = u1.q2 (1)

u5 = u1.q4 \Rightarrow 27 = u1.q4 (2)

Từ (1) và (2) tớ hoàn toàn có thể suy rời khỏi được

q^{2} = \frac{u_{1}.q^{4}}{u_{1}.q^{2}} = 9 \Rightarrow q = \pm 3

Xét ngôi trường hợp:

Với q = 3 tớ sở hữu u_{1} = \frac{1}{3} ta sở hữu cung cấp số nhân thứu tự là: \frac{1}{3}; 1; 3; 9; 27

Với q = -3 tớ sở hữu u_{1} = -\frac{1}{3} ta sở hữu cung cấp số nhân thứu tự là: \frac{1}{3}; -1; 3; -9; 27​​​​​​​​​​​​​​

b) Theo đề bài bác rời khỏi tớ có:

\left\{\begin{matrix} u_{4} - u_{2} = 25\\ u_{3} - u_{1} = 50 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} u_{1}q^{3} - u_{1}q = 25\\ u_{1}q^{2} - u_{1} = 50 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} u_{1}q(q^{2} - 1) = 25 (1)\\ u_{1}(q^{2} - 1) = 50 (2) \end{matrix}\right.

Thay (2) nhập phương trình (1) tớ sở hữu 50.q = 25 \Leftrightarrow q = \frac{1}{2}

\Rightarrow u_{1} = -\frac{200}{3}

Vậy tớ sở hữu cung cấp số nhân như sau:

-\frac{200}{3}; -\frac{100}{3}; -\frac{50}{3}; -\frac{25}{3}; -\frac{25}{6}

Ví dụ 3: Tìm cung cấp số nhân sở hữu sáu số hạng, hiểu được tổng của 5 số hạng đầu là 31 và tổng của 5 số hạng sau là 62

Lời giải:

Tổng của 5 số hạng đầu vày 31, kể từ cơ tớ suy ra:

u1 + u2 + u3 + u4 + u5 = 31

\Rightarrow u1q + u2q + u3q + u4q + u5q = 31q

\Rightarrow u2 + u3 + u4 + u5 + u6 = 31q (1)

mà tổng của 5 số hạng sau  vày 62 kể từ đánh đố suy ra

u2 + u3 + u4 + u5 + u6 = 31q = 62

vậy q = 2

Vì S5 = 31 = \frac{u_{1}(1 - 2^{5})}{1 - 2} \Rightarrow u_{1} = 1

Vậy tớ sở hữu cung cấp số nhân theo dõi đề bài bác là: 1, 2, 4, 8, 16, 32

Ví dụ 4: Tỉ lệ tăng dân sinh của tỉnh x là một,4%. hiểu rằng bên trên thời khắc tham khảo số dân của tỉnh lúc này là một,8 triệu con người, căn vặn với nút tăng bổng như thế thì sau 5 năm, 10 năm số nữa dân sinh của tỉnh cơ là?

Lời giải:

Gọi số dân của tỉnh cơ lúc này là N 

Sau 1 năm dân sinh tăng là một,4%N 

Vậy năm tiếp theo, số dân của tỉnh này là n + 1,4%N = 101,4%N 

Số dân tỉnh cơ sau hàng năm lập trở thành một cung cấp số nhân như sau N ; (101,4/100)N ; (101,4/100)2N ; … 

Giả sử N=1,8 triệu con người thì sau 5 năm số dân của tỉnh là: (101,4/100)5. 1,8 = 1,9 (triệu dân) 

Và sau 10 năm được xem là (101,4/100)10. 1,8 = 2,1 (triệu dân)

Ví dụ 5: Đề bài bác cho tới un sở hữu những số hạng 0, tìm  u1 biết:

u_{n}=\frac{2}{3^{n-1}}. Mà u_{n}=\frac{2}{6561} \Rightarrow 3^{n-1} = 6561 \Rightarrow n=9

Lời giải: 

Giải vấn đề vận dụng công thức cung cấp số nhân

Tham khảo ngay lập tức một vài dạng bài bác tập dượt thương bắt gặp về cung cấp số nhân được những thầy cô VUIHOC tổng hợp

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng suốt thời gian học tập kể từ thất lạc gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo dõi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học tới trường lại cho tới lúc nào hiểu bài bác thì thôi

⭐ Rèn tips tricks gom bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập test không lấy phí ngay!!

Xem thêm: cho đường tròn tâm o

Trên đó là toàn cỗ lý thuyết và những dạng công thức cung cấp số nhân. Mong rằng với nội dung bài viết này, những em học viên hoàn toàn có thể giải những bài bác tập dượt kể từ cơ bạn dạng cho tới nâng lên thật thành thục. Các em truy vấn Vuihoc.vn và ĐK khóa huấn luyện nhằm học tập và ôn tập dượt kỹ năng và kiến thức Toán 11 phục vụ ôn ganh đua trung học phổ thông QG ngay lập tức kể từ thời điểm ngày hôm nay nhé!

>> Xem thêm:

  • Tổng hợp ý những công thức cung cấp số nằm trong và cung cấp số nhân & bài bác tập
  • Cấp số nằm trong là gì? Công thức cung cấp số nằm trong và bài bác tập
  • Xác suất của trở nên cố
  • Giới hạn của sản phẩm số